A guide to Inflation Linked Bonds

EXECUTIVE SUMMARY

Since the issue of OATi Jul09 in September 1998, the ILB market has grown rapidly in the eurozone. Italy, France, Germany and Spain are active issuers of inflation products and the real curve in these countries covers a wide range of tenors. The current outstanding amounts to EUR 530bn.

In the following pages, we revisit the most important characteristics of these bonds (structure, basic working, carry calculations, total return and beta analysis). Then we look at the most important factors driving breakeven inflation and real yields in the eurozone.

INFLATION LINKED BONDS FORM A COMPLETE REAL CURVE

Source: Bloomberg, UniCredit Research
INSTRUMENT STRUCTURE

1. Basic concepts of inflation-linked bonds

Inflation-linked bonds (ILBs) are financial instruments designed to provide a known real rate of return. Unlike fixed coupon bonds (where the nominal cash flows are known ex-ante while the real return is uncertain), ILBs have uncertain nominal cash flows which consist of two parts: a fixed one (real component) and an inflation-linked component.

The fixed component corresponds to a real coupon, and is calculated as a percentage of the indexed principal. The value of the real coupon is set when an ILB is launched (depending on market conditions) and remains fixed until maturity.

The variable part evolves according to inflation; in fact, it is this part that specifically safeguards the investor from inflation. To provide protection from inflation, the principal is revalued on a daily basis according to inflation. This preserves the real value of nominal coupons as well as of the redemption capital. Moreover, European ILBs offer protection vs. deflation as they are issued with a minimum redemption clause at par.

The indexed principal on any period is defined as:

\[R_t = \left(\frac{D_t}{B} \right) \cdot N \]

and at maturity:

\[R_t = \text{Max}\left(\frac{D_t}{B} \cdot N, N \right) \]

Where:

R: Indexed principal at time t
D(t): Daily Inflation Reference at date t (see next)
B: Base index, the level of (interpolated) CPI at the time of the bond’s creation
N: nominal bond value, 100.

The nominal coupon is calculated as a fixed percentage of the indexed principal.

\[\text{CouponPaid} = \text{Coupon Real} \cdot \frac{D_t}{B} \cdot N \]

The ratio of the Daily Inflation Reference to the Base Index is commonly known as the IndexRatio.

Because inflation is available only with a monthly frequency and it must be possible to trade bonds on a daily basis, a mechanism to obtain a daily value for the CPI is needed. A daily inflation reference is simply obtained via linear interpolation.
As CPI figures are only available with some lag, the daily inflation reference uses t-3 and t-2 CPIs to ensure that it is always possible to calculate the index on any trading day. The formula is the following:

Daily inflation reference on day (d) = CPI_{m-3} + ((nd-1)/ NDm) * (CPI_{m-2} – CPI_{m-3})

Where:

CPI_{m-2}: price index of month m-2,

CPI_{m-3}: price index of month m-3,

nd: actual number of days since the start of the month

NDm: Number of days in month m

The formula is a simple linear interpolation, with the slope equal to the monthly inflation of two previous months. Using CPIs t-3 and t-2 ensures that a calculation is possible on any trading day. Note that, on any given day, it is possible to calculate the accrual dynamics only up to a given period in the future (usually 6-weeks on the day of CPI release, less on other days).

An example can be useful to sum up: the next graph shows the simulation of the flows of an inflation-linked bond with a real coupon of 3%, 10Y maturity and the assumption that inflation stays constant at 2%. The nominal coupon reaches the value of 2.43% at redemption date and the investor receives a redemption value equal to 121.899.

INFLATION, NOMINAL COUPON AND REVALUED PRINCIPAL: AN EXAMPLE

Note that for a level of inflation close to 2% (i.e. the values that approximately should be observed in the eurozone), the capital indexation follows approximately a linear pattern. Higher levels of inflation would produce a more accentuated curvature.

Inflation-linked bonds are usually quoted in real yield terms. In other words, the quoted price is simply the discounted value of real coupons.
The cash price an investor has to pay can be expressed as:

\[
\text{RealPrice} = \sum_{i=1}^{T} \frac{\text{RealCoupon}}{(1+r)^i} + \frac{100}{(1+r)^T}
\]

The cash price an investor has to pay can be expressed as:

\[
\text{Cash Price} = \left[\text{RealPrice} + \text{Accrual} \right] \times \text{IndexRatio}
\]

In the next section, we will go into the details on how to calculate the prices of ILBs.

2. An example using Bloomberg

Inflation-linked bonds can be easily evaluated with Bloomberg.

Above, we have included a print out from Bloomberg to explain the main features of an ILB in line with the previous section. The screen is divided into several sections: the top section that provides pricing information and security descriptions and 4 quadrants below. Note first of all that the price quoted (112.24) is clean of any inflation uplift. Some useful numbers can be seen in the top left section of the screen. The “Inflation Assumption” is the expected 12 month annualized change in the reference CPI value (can be adjusted by the user). This is updated on a daily basis using daily CPI interpolations. It is assumed to hold for the entire period of the bond in the “Annual Yield w/Infl Assumption”, this assumption helps to calculate the nominal return of the ILBs in case actual inflation equals the “inflation assumption” cell. This cell provides an easy way to calculate the market estimate for breakeven inflation. All that is needed is to adjust the “inflation assumption” until the “yield with inflation assumption” cell reaches the yield of a similar maturity plain vanilla bond.
The other important sector on the screen is the **Sensitivity Analysis**. Here the duration-type measures of the bond can be manually scaled depending upon one's view on how sensitive the real bond is going to be relative to the nominal bond. Since this assumption is absolutely key to understanding the behavior of ILBs, we refer the reader to the section entitled “The Beta”.

Most of the section on **Economic Factors** simply provides a breakdown of the CPI index for use in subsequent calculations in the payment invoice. In particular, on top of the quadrant there are the base CPI value, and the Reference CPI Value, which we used in the previous paragraph. In particular, the latter results from the two indices calculated in May and April 2015, respectively. The last variable included in this quadrant, the Index Ratio, is calculated as:

\[
\frac{D}{B}
\]

Where:

- D: Daily Inflation Reference at date t (see next)
- B: Base index, the level of (interpolated) CPI at the time of the bond’s creation

The total amount in the **Invoice (Principal)** can be quite simply calculated as the gross real price multiplied by the nominal amount and then by the index ratio (reported in the Economic Factors section, 1.00869 in our example). The next step is to add the coupon accrual, appropriately revalued by the index ratio. The sum then gives the invoice amount.

4. Inflation basis risk (or imperfect inflation protection)

ILBs are designed to protect the investor from inflation and offer a (known) real return. In the real world, however, full protection cannot be achieved because of a number of reasons, which we outline below. We leave to the investor the evaluation of how important each reason is in his personal situation.

BASIS RISK BETWEEN THE INVESTOR BASKET AND THE CPI INDEX

Basis risk is the difference between the inflation basket that the bond tracks and the one that is relevant to an investor. Basis risk obviously arises because ILBs need to be standardized and cannot be tailored to each investor's specific needs. Basis risk can be mitigated (for example by offering to an Italian resident a bond linked to Italian inflation) but will be fully eliminated only for those investors who consume in the exact portion as the CPI basket.

REINVESTMENT RISK

The second risk to perfect inflation protection comes from the rate at which the coupons are reinvested. The reinvestment risk is rather small when yields are low. Also, the shorter the life of the bond and the lower the real coupon, the lower the reinvestment risk will be. Compared to nominal bonds, the reinvestment risk is much lower since a lot of the cashflow comes from the increased principal.

INDEX LAG

Cash flows are linked to inflation levels from 3 to 8 months before. This is a small problem for the coupon payments but leaves the investor without inflation protection in the final 3-8 months of the life of the bond. Should prices accelerate rapidly in these last few months, then there will be no protection provided at all.
MATURITY MISMATCH

While this is becoming less of a problem after the IL market growth in recent years, European ILBs do not yet constitute a complete curve and so matching assets and liabilities cannot be perfect. That said, the addition of recent bonds has helped in the development of the inflation-linked swap market where tailor-made structures can be purchased.

3. The breakeven inflation rate calculation

Breakeven is a key parameter when dealing with inflation-linked bonds, used to indicate the level of inflation that equalizes the return from an inflation-linked bond and that from a fixed-coupon bond. Usually, breakeven is calculated as the difference between nominal and real yields. This is a good approximation, but the correct way to calculate the BEI is to lay out the cash flows of the two bonds and find the level of inflation that equalizes the returns. The example below illustrates the idea. Consider a nominal 10Y bond with a 5% annual coupon and an inflation-linked bond with 3% real annual coupon.

<table>
<thead>
<tr>
<th>Date</th>
<th>Nominal</th>
<th>ILB</th>
<th>Infl. index</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-Jul-15</td>
<td>100</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>20-Jul-16</td>
<td>5</td>
<td>3.06</td>
<td>101.94</td>
</tr>
<tr>
<td>20-Jul-17</td>
<td>5</td>
<td>3.12</td>
<td>103.22</td>
</tr>
<tr>
<td>20-Jul-18</td>
<td>5</td>
<td>3.18</td>
<td>105.94</td>
</tr>
<tr>
<td>20-Jul-19</td>
<td>5</td>
<td>3.24</td>
<td>108.00</td>
</tr>
<tr>
<td>19-Jul-20</td>
<td>5</td>
<td>3.30</td>
<td>110.09</td>
</tr>
<tr>
<td>19-Jul-21</td>
<td>5</td>
<td>3.37</td>
<td>112.23</td>
</tr>
<tr>
<td>19-Jul-22</td>
<td>5</td>
<td>3.43</td>
<td>114.41</td>
</tr>
<tr>
<td>19-Jul-23</td>
<td>5</td>
<td>3.50</td>
<td>116.63</td>
</tr>
<tr>
<td>18-Jul-24</td>
<td>5</td>
<td>3.57</td>
<td>118.90</td>
</tr>
<tr>
<td>18-Jul-25</td>
<td>105</td>
<td>124.84</td>
<td>121.21</td>
</tr>
<tr>
<td>IRR</td>
<td>5.00%</td>
<td>5.00%</td>
<td>1.94%</td>
</tr>
</tbody>
</table>

Source: UniCredit Research

As the example shows, the rate of inflation that makes the IRR equal for the nominal bond and for the ILB is 1.94%. This is slightly less than the simple difference between nominal and real yields. The reason can be explained with the following equality:

\[(1 + \text{BEI}) \times (1 + \text{real yield}) = (1 + \text{nominal yield})\]

From which we can obtain:

\[\text{BEI} = \frac{(\text{nominal yield} - \text{real yield})}{(1 + \text{real yield})}\]

For low levels of real yield, the approximation \(\text{BEI} = \text{nominal yield} - \text{real yield}\) works reasonably well, as shown in the following table. The table also shows that calculating the BE as a simple difference between nominal and real yields always overestimates the correct value:
Nominal yields

<table>
<thead>
<tr>
<th></th>
<th>0%</th>
<th>0.5%</th>
<th>1.0%</th>
<th>1.5%</th>
<th>2.0%</th>
<th>2.5%</th>
<th>3.0%</th>
<th>3.5%</th>
<th>4.0%</th>
<th>4.5%</th>
<th>5.0%</th>
<th>5.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>0.5%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1.0%</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1.5%</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2.0%</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>2.5%</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>3.0%</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>3.5%</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>4.0%</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>4.5%</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>5.0%</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>5.5%</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

The table shows the difference in basis points between the BE calculated as simple difference between nominal and real yields and the BEI inflation calculated with the analytical formula. The table does not consider the case of negative real yields.

Source: UniCredit Research

3. Breakeven inflation as a measure of inflation expectations

As the name indicates, BE inflation represents the level of inflation that makes a nominal bond and an ILB equivalent in terms of return. It is not conceptually different from a forward rate, which indicates the level of future spot rate that makes the return of a short-term bond equal to that of a long-term bond.

A key question is if BE inflation reflects market inflation expectations. After all, BE inflation should be related to inflation expectations: if an investor has a strong view that future inflation will differ from BE inflation, he will find it profitable to enter a trade of ILBs vs. nominal bonds. If the investor’s community behaves in this way, BE inflation should reflect the consensus view on inflation. There are a few caveats, though.

The most important one is that the equality between expectations and BE would hold only under risk-neutrality. In other cases, investors will pay a premium to hold the instrument with a higher degree of certainty. One should expect investors to prefer certainty over real cash flows. If this is the case, then BE should be higher than inflation expectations. In fact, for a nominal bond:

\[Y_N = r + \pi_e + P \]
\[BE = Y_N - Y_R = r + \pi_e + P - r = \pi_e + P \]

A second caveat is related to the convexity offered by ILBs. This is another advantage of linkers vs. nominal bonds and would act in a direction similar to the inflation risk premium.

A third caveat relates to liquidity premium, and acts in the opposite direction. As inflation-linked bonds are less liquid compared to nominal bonds, investors should require a premium to hold this asset class.

A fourth caveat, which is highly technical, is that BE will exceed inflation expectations because of the compounding effect. In essence, the investor will receive over N years a payoff equal to \((1+\pi)^N\). We can compare this payoff to expected inflation \((1+\pi_e)^N\). It can be shown that the following inequality holds:

\[\mathbb{E}[(1+\pi)^N] > [1+\mathbb{E}(\pi)]^N \]

The bottom line is that, while BE mainly reflects inflation expectations, one should always be aware of these caveats when interpreting BE as an exact measure of inflation expectations.
The following chart compares the 10Y BE with inflation and a survey-based measure of inflation expectations in the US. Evidence suggests that BEs have undershot both the level of realized inflation (which must be an important component of any inflation forecast) and a survey-based measure of inflation expectation. The chart on the right compares the average 10Y BE with realized inflation for the US, UK, and EMU. The gap is fairly large in the EMU. One reason is because the chart shows the level of BE quoted in ZC swap contracts and another one may be related to the credibility of the ECB 2% inflation target. 10Y BE in the US have averaged ca. 2%, a bit lower than realized inflation. This can reflect that investors attach a high credibility to the Fed inflation goal. It could also reflect weak demand for inflation products, which drives down the level of BE.

In the UK, 10Y BE are fairly in line with the level of realized RPI inflation.

BE AND REALIZED INFLATION

![Chart comparing 10Y BE with realized inflation and U-Michigan inflation survey](chart.png)

The chart shows the average inflation and BE since 1999. For the EMU the average starts in 2004.

Source: UniCredit Research

CARRY CALCULATIONS

5. Carry calculations

As for nominal bonds, carry is a crucial variable in determining the profitability of a short or long position also for ILBs. In general, the carry is the difference between the cost of financing an investment and the income coming from holding a bond (generated via the coupon).

Carry can be translated in the yield space and is calculated as the difference between spot and forward rates. If forward yields are higher than spot yields, we are in a positive carry environment and vice versa.

The forward curve can be easily calculated for nominal bonds, making it easy to assess the carry. On the contrary, the forward curve cannot be easily calculated for inflation-linked bonds, which makes it a little tricky to determine the carry.

In particular, when an investor buys an inflation-linked bond, he cannot determine what is the carry on a medium-term horizon because that will depend on the index accrual.

Calculating the carry of an ILB is similar to nominal bonds; but we need to take the inflation uplift into account. Assuming for simplicity that no coupon is paid out during the calculation period:

\[
\text{Carry} = \text{Income} - \text{Repo costs}
\]
Also:

\[\text{Income} = \text{Real coupon} + \text{Inflation Accrual} \]

Hence:

\[\text{Carry} = \text{Real coupon} + \text{Inflation Accrual} - \text{Repo costs} \]

The **Inflation Accrual** (the variable component) is known only for relatively short horizons (from 2 to 6 weeks), as we have explained in the first section. For longer periods one needs to rely on inflation forecasts to calculate the carry. Let's now look at the calculations in detail.

When an investor buys an ILB, the cash price he has to pay is:

\[\text{GP}_{t1} = (\text{NP}_{t1} + \text{Coupon Accrual}_{t1}) \times \text{IR}_{t1} \]

Where GP is the gross price and NP is the net price, IR is the index ratio and Coupon Accrual refers to the real component.

The gross cash price is needed as a base for the repo costs. At the evaluation date of the carry, the cash value of the position will be the initial level plus the repo. Subtracting the accrued coupon and dividing by the index ratio will yield the forward price:

\[\text{FwP} = \frac{(\text{NP}_{t1} + \text{Coupon Accrual}_{t1}) \times \text{IR}_{t1} + \text{Repo} - \text{Coupon Accrual}_{t2}}{\text{IR}_{t2}} \]

This can be rearranged as:

\[\text{FwP} = \frac{\text{NP}_{t1} \times \text{IR}_{t1}/\text{IR}_{t2} + \text{Repo}/\text{IR}_{t2} + \text{Coupon Accrual}_{t1} - \text{Coupon Accrual}_{t2}}{\text{IR}_{t2}} \]

Which is the standard expression for the forward price (initial price – income + costs)

Note that the higher the inflation during the holding period of the bond, the lower the forward price and the higher the carry. Also consider that the index ratio has a few months lag. So for example on 1Aug15, the relevant index ratio will be the May one and on 1Sep15 it will be the June one. A month such as July (which has a high negative seasonality in the CPTFEMU) will tend to create a negative carry during September. As investors anticipate this, they will sell an ILB ahead of September. This should depress the level of BEs.

6. Carry calculation in Bloomberg

Fortunately, we do not necessarily have to do the carry calculations: Bloomberg will do it for us! The calculations can be done with the function FPA (Forward Pricing Analysis). We provide here an example and a brief explanation of the important elements on this page.

As an example, consider to buy the BTPei Sep24 at a price of 112.47. We are interested in the carry of this trade for a 1-month horizon. The trade settlement is 21Jul 2015, the relevant inflation indices are May (117.76) and June (117.74). Inflation between May and June has been slightly negative (-0.02% m/m). As a result, our position will lose money on the inflation component and will cost in terms of repo. Note that, at the time of writing, repo rates are very low. Finally, the position will earn from coupon accrual (ca. 0.2% per month).
In the top part of the page, there is the "spot price". Then the Repo rate and the Termination date need to be adjusted appropriately. All calculations assume that the coupon is reinvested in to the bond (as can be seen on the right of the screen).

In our example, to calculate the carry for the BTPei Sep24, Bloomberg sets the Repo rate at -0.019% and the termination date as 24 August 2015 (31 days from the settlement date). Bloomberg will calculate the forward price at the termination date we insert (the user can either insert a specific date or the number of days ahead in time).

Once we have set all the parameters, we obtain the full and the net forward prices and the forward yield. Furthermore, Bloomberg provides us with the calculation of the yield drop or the yield increase. For the bond proposed, with settlement date at 23 July, termination date one month after, Repo rate at -0.019%, net spot price of 112.475 and an inflation assumption of 0.14459%, we obtain a forward net price of 112.21. This corresponds to a forward yield of 0.943%. Thus, the bond has a positive carry of 1.64bp. This can also be seen by the fact that the forward price is 26 cents lower than the spot.

If inflation was higher (say that the term reference CPI was 119 rather than 117.74), the carry would be 14bp. The forward price would be 111.01. If, on the other hand, inflation was lower (say that the term reference CPI was 117 rather than 117.74), the carry would be -6.2bp. The forward price would rise in this case to 112.93.
RISK PROFILE OF INFLATION LINKED BONDS

How do ILBs compare to fixed coupon bonds in terms of risk? There are a few important aspects worth investigating:

1. Volatility of real yields vs. nominal yields
2. Duration of ILBs vs. fixed coupon bonds
3. Sensitivity of real yields to nominal yields (beta and convexity)

1. Volatility of real yields vs. nominal yields

To study the relative volatility of nominal and real yields, it is useful to start from the Fisher equation:

\[Y = R + \text{Expected infl}; \]

So that:

\[\text{Variance (Y)} = \text{Variance (R)} + \text{Variance (Expected infl)} + 2 \times \text{Covariance (r, Expected infl)} \]

This formula implies that, if the covariance between real yields and break-even is non-negative (which is what we generally observe), real yields are less volatile than nominal yields. Furthermore, the higher the volatility of inflation expectations, the higher will be the difference in volatility between real and nominal yields (for a given level of the covariance). This is the key reason why linkers are considered as less risky than nominal bonds.

What do we observe empirically?

The following charts show the historical behavior of the yield variance of the OATei Jul32 and the OAT Oct32. The analysis suggests that nominal yields have been more volatile than real yields but only modestly. The chart also shows that inflation expectations have been remarkably stable in the EMU and their volatility is considerably lower compared to yield volatility. This is likely the result of the ECB monetary policy. Empirically, the covariance between real yields and BE has been zero until the beginning of the crisis and then it has turned negative. Negative covariance means that a rise in the real yield goes along with a decline in inflation expectations. Note that negative covariance tends to reduce the gap in volatility between real and nominal yields.

Source: UniCredit Research
A market for inflation-linked bonds in the EMU is a relatively recent thing. The next two charts show the behavior of real and nominal yields for the UK and the US. The key message is that during the nineties, inflation expectations were relatively volatile, while real yields were pretty stable. Likely as a result of a stronger focus on the inflation-fighting role of monetary policy, inflation expectations stabilized in the early 2000s and remained fairly stable until the eruption of the financial crisis. The main implication is that, while nominal yields were more volatile than real yields when ILBs were introduced, now their volatility is less different.

Another important message is that, during the early stage of the financial crisis, real yields became considerably more volatile than nominal yields. This went along with a strong negative covariance between real yields and inflation expectations. In the US, real yields were more volatile than nominal yields also during the tapering. It is not easy to justify economically a higher volatility of real yields, especially as this goes along with a negative covariance of real yields and inflation expectations.

REAL AND NOMINAL YIELD VOLATILITY – UK & US

[Graph showing real and nominal yield volatility for the UK and US]

2. Duration

We define real duration as the duration of the real part of an inflation-linked bond. In other words, the duration calculated using the real coupon and the non-revaluated principal. The real duration can be used very much as the duration of a nominal bond, applied to the real component:

\[
\frac{d(RealP)}{RealP} = -\frac{RealDuration}{(1 + r)} dr
\]

Inflation-linked bonds have usually a higher duration than nominal bonds, as their coupons and yields tend to be lower.

The real duration tells us how the price of an inflation-linked bond changes with respect to the real yield. What we are interested to know, however, is how the price of ILBs changes in relation to nominal yields. At this stage, it is essential to introduce the concept of beta, which is the sensitivity of real yields to changes in nominal yields.
3. Beta and convexity

Beta is defined as the coefficient of the following regression:

\[dY_R = \alpha + \beta dY_N + \varepsilon \]

Where \(Y(R) \) is the real yield and \(Y(N) \) is the nominal yield.

The beta indicates the sensitivity of real yields to changes in nominal yields. Intuitively, changes in nominal yields will be due in part to inflation expectations and in part to real factors. As a result, the beta should be between zero and one. It will be close to one when inflation expectations are relatively stable and will be close to zero when most of the change in nominal yields is caused by changes in inflation expectations.

The fact that beta should be between zero and one means that ILBs tend to be defensive instruments: in an environment of rising nominal yields, ILBs tend to outperform nominal bonds (and vice versa). Consider that the \(\beta \) can be expressed as:

\[\beta = \text{Cov}(dY_n, dY_r) / V(dY_n) \]

taking into account that \(Y_r = Y_n - \pi \), we can obtain:

\[\beta = 1 - \text{cov}(Y_n, \pi) / V(Y_n) \]

which indicates that \(\beta \) is close to one when the covariance between nominal yields and inflation expectations is low. This is intuitive and simply means that beta is close to 1 when most of the changes in nominal yields are due to changes in real yields.

What is the empirical evidence on the beta? The chart below on the left shows the estimated beta for the EUR 5Y ZC swaps. A first important indication is that the beta is time-varying. Both in the EMU and in the US it has been as low as 0.4 and has been above 1 at times. Since 2004, it has been on average 0.90 in the US and 0.75 in the EMU. There seems no be stable relation between betas and the level of yields.

CORRELATION BETWEEN BETAS AND THE LEVEL OF YIELDS

![Correlation chart](image)

The chart shows the relationship between US 5Y swap nominal rate and the 4M rolling beta calculated on daily changes in 5Y real swap rates and 5Y nominal swap rates.

Source: UniCredit Research
CONVEXITY

What can we say about the convexity of ILBs? When looking at the real component only, ILBs generally have a higher convexity compared to fixed coupon bonds. However, ILBs also have higher duration, so a comparison with fixed coupon bonds has to take this into account. To do this, we compare two portfolios, one fully invested in fixed coupon bonds and the other invested in an inflation-linked bond and cash, so as to obtain the same duration as the first portfolio. The chart below shows the price response of a portfolio of ILBs relative to a portfolio of fixed coupon bonds. The underlying assumption is that beta=1. The difference in convexity is slightly in favor of ILBs. When beta falls below 1, the convexity is in favor of fixed coupon.

CONVEXITY OF ILBS: AN EXAMPLE WITH BETA =1

The example plots the value of two portfolios, one invested in the OAT Apr41 and the other in the OATei Jul41 and in cash, so that they have the same initial duration.

In this example above, the beta of real yields to nominal yields is assumed to be 1. As we have observed previously, however, the beta is generally different from 1. The following example show a case for beta=0.75.

CONVEXITY OF ILBS: AN EXAMPLE WITH BETA =0.75

The example plots the value of two portfolios, one invested in the OAT Apr41 and the other in the OATei Jul41 and in cash, so that they have the same initial duration.
TOTAL RETURN ANALYSIS

What are the main drivers of total return for ILBs? There are three sources: price return, coupon accrual and inflation accrual. Price return is the dominant factor in the short term, while the other two are more relevant in the medium term.

Inflation-linked bonds are usually evaluated vs. fixed coupon bonds, so an important question is what drives the relative performance between the two. In the short term, the main factor is how BE changes (the beta of real yields vs. nominal yields comes into play here). In the medium term, it is also important how actual inflation differs from BE.

Consider that ILBs usually have lower coupons than nominal bonds, so their (real) duration is higher. If real yields rise by the same amount as nominal yields (for example because growth accelerates with no effects on inflation expectations), ILBs will underperform nominal bonds. The opposite is true when yields fall. The following table shows an example.

EXAMPLE 1: YIELDS FALL – BETA=1

<table>
<thead>
<tr>
<th></th>
<th>BE</th>
<th>Nominal</th>
<th>Real</th>
<th>Infl</th>
<th>P ILB</th>
<th>P Nom</th>
<th>TotRet Nom.</th>
<th>ILB</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>2.00%</td>
<td>4.00%</td>
<td>2.00%</td>
<td></td>
<td>100.00</td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>2.00%</td>
<td>3.00%</td>
<td>1.00%</td>
<td>2.00%</td>
<td>108.57</td>
<td>107.79</td>
<td>11.8%</td>
<td>12.8%</td>
</tr>
</tbody>
</table>

EXAMPLE 2: YIELDS RISE – BETA=1

<table>
<thead>
<tr>
<th></th>
<th>BE</th>
<th>Nominal</th>
<th>Real</th>
<th>Infl</th>
<th>P ILB</th>
<th>P Nom</th>
<th>TotRet Nom.</th>
<th>ILB</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>2.00%</td>
<td>4.00%</td>
<td>2.00%</td>
<td></td>
<td>100.00</td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>2.00%</td>
<td>5.00%</td>
<td>3.00%</td>
<td>2.00%</td>
<td>92.21</td>
<td>92.89</td>
<td>-3.1%</td>
<td>-3.9%</td>
</tr>
</tbody>
</table>

Source: UniCredit Research

However, beta is usually not one. When beta is lower than one, a rise in nominal yields goes along with a less-than-proportional rise in real yields (and hence a rise in BE), and vice versa. The following table illustrates what happens in this case.

EXAMPLE 3: YIELDS FALL – BETA=0.5

<table>
<thead>
<tr>
<th></th>
<th>BE</th>
<th>Nominal</th>
<th>Real</th>
<th>Infl</th>
<th>P ILB</th>
<th>P Nom</th>
<th>TotRet Nom.</th>
<th>ILB</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>1.50%</td>
<td>4.00%</td>
<td>2.00%</td>
<td></td>
<td>100.00</td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>1.50%</td>
<td>3.00%</td>
<td>1.50%</td>
<td>2.00%</td>
<td>104.18</td>
<td>107.79</td>
<td>11.8%</td>
<td>8.3%</td>
</tr>
</tbody>
</table>

EXAMPLE 4: YIELDS RISE – BETA=0.5

<table>
<thead>
<tr>
<th></th>
<th>BE</th>
<th>Nominal</th>
<th>Real</th>
<th>Infl</th>
<th>P ILB</th>
<th>P Nom</th>
<th>TotRet Nom.</th>
<th>ILB</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>2.00%</td>
<td>4.00%</td>
<td>2.00%</td>
<td></td>
<td>100.00</td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>2.50%</td>
<td>5.00%</td>
<td>2.50%</td>
<td>2.00%</td>
<td>96.01</td>
<td>92.89</td>
<td>-3.1%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Source: UniCredit Research

As these examples show, the difference in performance between nominal bonds and ILBs is highest in the case of rising yields and beta lower than 1. Intuitively, this is a case when the rise in yields is mainly due to an increase in inflation expectations, the situation for which ILBs are designed to provide protection. The example also illustrates that the difference in performance when beta is one (stable BE) is relatively small.
We now turn our attention to the impact of actual inflation relative to the level priced in the BE. In this example, we consider two 10-year bonds. BE is 200bp and real yields trade at 2%. After one year, realized inflation has exactly matched BE (so 2%). Nominal and real yields have remained stable. ILBs and fixed coupons have the same return (unsurprisingly). Now consider that inflation turns out to be 2.2%, higher than expected. BE do not change as markets see the higher inflation as temporary. ILBs outperform fixed coupon bonds.

EXAMPLE 5: HIGHER-THAN-EXPECTED INFLATION, NO CHANGE IN YIELDS

<table>
<thead>
<tr>
<th></th>
<th>BE</th>
<th>Nominal</th>
<th>Real</th>
<th>Infl</th>
<th>P ILB</th>
<th>P Nom</th>
<th>TotRet Nom.</th>
<th>ILB</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>2.00%</td>
<td>4.00%</td>
<td>2.00%</td>
<td></td>
<td>100.00</td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>2.00%</td>
<td>4.00%</td>
<td>2.00%</td>
<td>2.50%</td>
<td>100.00</td>
<td>100.00</td>
<td>4.0%</td>
<td>4.5%</td>
</tr>
</tbody>
</table>

Source: UniCredit Research

Finally, we consider the case of higher-than-expected inflation, which leads to a rise in BE (beta less than one). This is again an ideal environment for linkers. First, they benefit from higher-than-expected inflation and second from the rise in breakeven.

EXAMPLE 6: HIGHER-THAN-EXPECTED INFLATION, RISE IN NOMINAL YIELDS, BETA=0.5

<table>
<thead>
<tr>
<th></th>
<th>BE</th>
<th>Nominal</th>
<th>Real</th>
<th>Infl</th>
<th>P ILB</th>
<th>P Nom</th>
<th>TotRet Nom.</th>
<th>ILB</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>2.00%</td>
<td>4.00%</td>
<td>2.00%</td>
<td></td>
<td>100.00</td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>2.25%</td>
<td>4.50%</td>
<td>2.25%</td>
<td>2.50%</td>
<td>97.98</td>
<td>96.37</td>
<td>0.4%</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

Source: UniCredit Research

These examples are stylized cases, real-life cases will be a mix of different factors. The following chart shows, for the UK market, the relative performance of a basket of ILBs vs. a basket of nominal coupon bonds.

ILBS VS FIXED COUPONS TOTAL RETURN

Relative performance is highly driven by BE …

The chart shows the 10Y UK BE and the return of a portfolio of ILBs vs. nominal bonds. The portfolio is scaled to 100 in January 1999. Values above 100 indicate an outperformance of ILBs.

Rule of thumb for UK: 100bp BE change=7% ILB outperformance

Source: Bloomberg, UniCredit Research
WHAT DRIVES REAL YIELDS AND BREAKEVEN

We have so far described the workings of inflation-linked bonds and some concepts related to their fixed income mathematics. In this section, we turn our attention to what drives the economic variables that are reflected in inflation-linked bonds.

According to the Fisher equation, linkers can be decomposed into a real yield part, expected inflation and a risk premium. In the following sections, we will examine the first two bits separately. We leave aside the risk-premium analysis, which would require a separate publication.

4. Real yields

Any economic textbook will tell you that the real interest rate is determined by the demand and supply of loanable funds. This comes from the definition of aggregate supply, Yd:

\[\text{Yd} = C + I + G \]

where C is planned consumption, I is planned investment and G is planned government spending (and we are ignoring the foreign sector). If there is goods-market equilibrium, then aggregate demand must equal aggregate supply:

\[\text{Yd} = Y \]

where Y is income (or output or aggregate supply). Now, income is either consumed, saved or taxed away, thus we can "decompose" Y into:

\[Y = C + S + T \]

where the terms follow their traditional definitions (S is savings, T is taxes). Consequently, in equilibrium:

\[C + I + G = C + S + T \]

which can be rewritten as:

\[I + (G-T) = S \]

This equilibrium condition requires that savings are enough to finance planned investment and the government deficit.

While a relatively clean concept to visualize in this textbook vision, the market clearing real interest rate is a little more difficult to predict in the real world.

One observation is that real yields tend to be cyclical. As the economic data improve, there is more demand for investment and this pushes up real yields.

The following chart helps to visualize this concept in the US, plotting the ISM vs. the US real yield (measured as the 10-year Treasury minus CPI y-o-y) from December 1982 until present. The chart illustrates a basic relationship whose sign should be quite stable over time. However, its strength can be time varying, as the chart below illustrates: from April 2002 to the present, the link between the ISM Index and US real yields has considerably weakened.
Between 2004 and 2007, this could have been due to a structural factor concerning the US economy in that specific period.

In 2005, Alan Greenspan reported the most important factors that were preventing bond yields from behaving like in past cycles. He described the situation as a “conundrum”:

- The presence of abundant liquidity enhanced the demand for investment; as a consequence, yields decreased. Greenspan referred specifically to the increasing pressure on pension funds and insurance companies “to make significant additions to longer-term bond portfolios”; this was due to the increase in the retirement population in the developed world.
- The accumulation of US Treasury obligations by foreign monetary authorities contributed to lower long-term Treasury yields.
- The increasing globalization in goods, services and financial markets contributed to lower inflation pressure and this, in turn, brought about a decline in long-term yields.

From 2008, the decline in real yields was due to the aggressive Fed easing policy (which included quantitative easing). The chart shows that even when the US economy started to improve after the Lehman crisis, real yields remained on a downward trajectory until very recently. This was partly due to risk aversion stemming from the EMU debt crisis, partly to the implementation of additional phases of QE and partly to structural factors, such as the increase in the saving rates and the decline in investments (due to risk aversion), which pushed many investors into US Treasuries.

5. What affects the BEI curve movements?

As we have outlined in previous paragraphs, the relative performance of ILBs vs. fixed coupon bonds depends on the way expected inflation changes. This is especially the case for relatively short holding periods.

In this paragraph, we look at historical correlations between the most important economic variables and the BE inflation, to provide an indication of what are its main drivers.

We start from the US market, which has a longer history compared to the eurozone when it comes to the inflation-linked market.
On Bloomberg, series of BE inflation are available for different tenors (2Y, 5Y, 10Y and 30Y); it is hence possible to analyze the correlation of the various economic variables with the BE inflation at different maturity buckets. The following table shows the historical correlation calculated on the sample Jan99/Jun15.

<table>
<thead>
<tr>
<th></th>
<th>CPI X level, t-2</th>
<th>CPI level, t-2</th>
<th>Core PCE level, t-2</th>
<th>IP level, t-2</th>
<th>ISM level</th>
<th>NFP level, t-1</th>
<th>Unempl level, t-2</th>
<th>Oil 3M ret.</th>
<th>CRB 3M ret.</th>
<th>Gold 3M ret.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2Y</td>
<td>14.5%</td>
<td>15.9%</td>
<td>28.3%</td>
<td>49.0%</td>
<td>61.2%</td>
<td>63.3%</td>
<td>-30.8%</td>
<td>55.0%</td>
<td>53.2%</td>
<td>11.3%</td>
</tr>
<tr>
<td>5Y</td>
<td>8.2%</td>
<td>26.3%</td>
<td>33.2%</td>
<td>46.6%</td>
<td>61.6%</td>
<td>63.4%</td>
<td>-34.8%</td>
<td>47.1%</td>
<td>42.7%</td>
<td>10.3%</td>
</tr>
<tr>
<td>10Y</td>
<td>-14.9%</td>
<td>13.9%</td>
<td>22.6%</td>
<td>40.7%</td>
<td>62.4%</td>
<td>53.8%</td>
<td>2.0%</td>
<td>40.8%</td>
<td>45.3%</td>
<td>10.6%</td>
</tr>
<tr>
<td>30Y</td>
<td>-18.0%</td>
<td>13.0%</td>
<td>27.7%</td>
<td>25.2%</td>
<td>56.0%</td>
<td>36.4%</td>
<td>2.0%</td>
<td>38.5%</td>
<td>50.9%</td>
<td>21.2%</td>
</tr>
</tbody>
</table>

Source: Bloomberg, UniCredit Research

The table highlights some interesting results. First, the PCE core is the measure on inflation that is most correlated with market inflation expectations. It has a better performance compared to headline CPI or core CPI. Second, and in line with economic theory, inflation expectations are highly correlated with economic activity, especially employment and the ISM. Industrial production appears to be less relevant. Third, oil prices and commodities have a high impact on inflation expectations, while gold is a lot less correlated.

The following charts show the historical relation between US BE inflation and some economic variables.
We can replicate the same analysis for the EMU. Unfortunately, the inflation-linked market is more recent in the EMU and government bond curves are less dense. In addition, in recent years, due to the sovereign debt crisis, ILBs issued by different countries have been priced in a different way due to the credit and liquidity risk components. Therefore, we will use ZC swap inflation contracts, which are available for a set of maturity buckets since mid-2004. This reduces the historical depth of the analysis, compared to the US.

Compared to the US, inflation plays a more relevant role in the EMU in driving inflation expectations. As in the US, PMIs are well correlated with inflation expectations. Notably, other popular business surveys display a very low level of correlation with the BE (look for example at the IFO in the table above). As in the US, unemployment and oil/commodity prices have a high degree of correlation with BEs. Similar to the US, the following charts illustrate the relation between 10Y ZC swap inflation and economic variables.
1. Inflation-linked bonds vs. other assets

In this section, we look at the performance of ILBs in terms of total return relative to other investment opportunities. We are particularly interested in the return vs. volatility balance as well as in the correlation vs. other asset classes. Data on total return for ILBs are calculated from the Barclays indices, while for fixed coupon bonds we use the EFFAs indices. Finally, for equities we take the MSCI index.

Total return for ILBs is available from 1997 in the US and UK. In the eurozone, we will analyze France and Italy, for which the data are available a bit later. We look at the total return index for a portfolio of ILBs in the 1-10Y bucket.

US and UK inflation-linked bonds have performed well in this period, better than fixed coupon bonds which likely reflects the presence of an inflation premium. Inflation-linked bonds have also outperformed short-dated bonds. This is not surprising and confirms that short-term rates adjust to inflation relatively slowly.

While offering a larger total return, ILBs have also experienced a higher volatility compared to fixed coupon bonds. This is particularly the case for Italy, as BTPei have been under strong pressure during the sovereign debt crisis.

In the sample we are analyzing, ILBs have also outperformed equities.
ILB Fixed long Fixed short Equity Comm.
Avg. ret. 5.15 4.68 3.58 6.96 2.16
St.dev 4.18 3.08 1.42 18.20 8.39
Sharpe 1.23 1.52 2.51 0.38 0.26

ILB Fixed long Fixed short Equity Comm.
Fixed long 0.68 1.00
Fixed short 0.59 0.90 1.00
Equity -0.05 -0.28 -0.24 1.00
Comm. 0.14 -0.13 -0.09 0.20 1.00

Source: Bloomberg, UniCredit Research
France

<table>
<thead>
<tr>
<th></th>
<th>ILB</th>
<th>Fixed long</th>
<th>Fixed short</th>
<th>Equity</th>
<th>Comm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. ret.</td>
<td>4.49</td>
<td>4.60</td>
<td>3.08</td>
<td>3.61</td>
<td>4.11</td>
</tr>
<tr>
<td>St.dev</td>
<td>3.57</td>
<td>3.01</td>
<td>1.33</td>
<td>21.63</td>
<td>8.49</td>
</tr>
<tr>
<td>Sharpe</td>
<td>1.26</td>
<td>1.53</td>
<td>2.32</td>
<td>0.17</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Italy

<table>
<thead>
<tr>
<th></th>
<th>ILB</th>
<th>Fixed long</th>
<th>Fixed short</th>
<th>Equity</th>
<th>Comm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. ret.</td>
<td>5.01</td>
<td>4.91</td>
<td>3.54</td>
<td>2.12</td>
<td>4.11</td>
</tr>
<tr>
<td>St.dev</td>
<td>6.73</td>
<td>4.32</td>
<td>2.32</td>
<td>23.24</td>
<td>9.21</td>
</tr>
<tr>
<td>Sharpe</td>
<td>0.74</td>
<td>1.14</td>
<td>1.52</td>
<td>0.09</td>
<td>0.45</td>
</tr>
</tbody>
</table>

On average, ILB returns have a 65/70% correlation with fixed coupon bonds (for Italy this is higher). The correlation with a bond portfolio in the 1-3Y area is a bit lower (55%/60%). In the US, UK and France, ILBs are weakly negatively correlated with equities.

The chart below shows the combination of average return and volatility for short-dated nominal bonds, nominal bonds in the 1-10Y bucket and ILBs in the 1-10Y bucket. In the selected period inflation-linked bonds have had a higher average return and a higher volatility compared to fixed coupon bonds. The chart on the right shows for the US only standard deviation and average return for various asset classes.
Fixed income assets – a comparison

US: equities, commodities and fixed income

<table>
<thead>
<tr>
<th>Avg. Ret.</th>
<th>US</th>
<th>UK</th>
<th>FR</th>
<th>IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Avg. Ret.</th>
<th>Nominal</th>
<th>NominalS</th>
<th>ILB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The chart shows historical return and standard deviation since 1997 for the US and UK, since 1999 for France and since 2003 for Italy.

Source: Bloomberg, UniCredit Research
Disclaimer

Our recommendations are based on information obtained from, or are based upon public information sources that we consider to be reliable but for the completeness and accuracy of which we assume no liability. All estimates and opinions included in the report represent the independent judgment of the analysts as of the date of the issue. We reserve the right to withdraw or to otherwise change our recommendations at any time without notice. Moreover, we reserve the right not to update this information or to discontinue it altogether without notice. This analysis is for information purposes only and (i) does not constitute or form part of any offer for sale or subscription of or solicitation of any offer to buy or subscribe for any financial, money market or investment instrument or any security, (ii) is neither intended as such an offer for sale or subscription of or solicitation of an offer to buy or subscribe for any financial, money market or investment instrument or any security nor (iii) as an advertisement thereof. The investment possibilities discussed in this report may not be suitable for certain investors depending on their specific investment objectives and time horizon or in the context of their overall financial situation. The investments discussed may fluctuate in price or value. Investors may get back less than they invested. Changes in rates of exchange may have an adverse effect on the value of investments. Furthermore, past performance is not necessarily indicative of future results. In particular, the risks associated with an investment in the financial, money market or investment instrument or security under discussion are not explained in their entirety.

This information is given without any warranty and should not be regarded as a substitute for obtaining individual advice. Investors must make their own determination of the appropriateness of an instrument referred to herein based on the merits and risks involved, their own investment strategy and their legal, fiscal and financial position. As this document does not qualify as an investment recommendation or as a direct investment recommendation, neither this document nor any part of it shall form the basis of, or be relied on in connection with or act as an inducement to enter into, any contract or commitment whatsoever. Investors are urged to contact their bank or financial advisor for individual explanations and advice.

Neither UniCredit Bank, UniCredit Bank London, UniCredit Bank Milan, UniCredit Bulbank, Zagrebačka banka, UniCredit Bank Czech Republic and Slovakia, Bank Pekao, UniCredit Russia, UniCredit Bank Romania nor any of their respective directors, officers or employees nor any other person accepts any liability whatsoever (in negligence or otherwise) for any loss howsoever arising from any use of this document or its contents or otherwise arising in connection therewith.

This analysis is being distributed by electronic and ordinary mail to professional investors, who are expected to make their own investment decisions without undue reliance on this publication, and may not be redistributed, reproduced or published in whole or in part for any purpose.

Responsibility for the content of this publication lies with:

UniCredit Group and its subsidiaries are subject to regulation by the European Central Bank

a) UniCredit Bank AG (UniCredit Bank), Am Tucherpark 16, 80389 Munich, Germany, (also responsible for the distribution pursuant to §34b WpHG). The company belongs to UniCredit Group. Regulatory authority: "BaFin" – Bundesanstalt für Finanzdienstleistungsaufsicht, Lurgialle 12, 60439 Frankfurt, Germany.
b) UniCredit Bank AG London Branch (UniCredit Bank London), Moor House, 120 London Wall, London EC2Y 5ET, United Kingdom. Regulatory authority: "BaFin" – Bundesanstalt für Finanzdienstleistungsaufsicht, Lurgialle 12, 60439 Frankfurt, Germany and subject to limited regulation by the Financial Conduct Authority, 25 The North Colonnade, Canary Wharf, London E14 9HS, United Kingdom and Prudential Regulation Authority 20 Moorgate, London, EC2R 6DA, United Kingdom. Further details regarding our regulatory status are available on request.
e) Zagrebačka banka d.d., Trg bana Jelačića 10, HR-10000 Zagreb, Croatia

Regulatory authority: Croatian Agency for Supervision of Financial Services, Minamsarska 24B, 10000 Zagreb, Croatia

f) UniCredit Bank Czech Republic and Slovakia, Na Prikope 85/20, CZ-11121 Prague, Czech Republic Regulatory authority: CNB Czech National Bank, Na Prikopě 28, 115 03 Praha 1, Czech Republic

g) Bank Pekao, ul. Grzybowska 53/57, PL-00-950 Warsaw, Poland

Regulatory authority: Polish Financial Supervision Authority, Plac Powstańców Warszawy 1, 00-950 Warsaw, Poland

h) ZAO UniCredit Bank Russia (UniCredit Russia), Prechistenskaya emb., 9, RF-10904 Moscow, Russia Regulatory authority: Federal Service on Financial Markets, 9 Leninsky prospekt, Moscow 119991, Russia

i) UniCredit Bank Czech Republic and Slovakia, Slovakia Branch, Šancová 1A, SK-813 33 Bratislava, Slovakia

j) UniCredit Bank Romania, Bucharast 1F Expozitiei Boulevard, RO-012101 Bucharast 1, Romania Regulatory authority: National Bank of Romania, 25 Lipscani Boulevard, RO-030031, 3rd District, Bucharest, Romania

k) UniCredit Bank Hong Kong (UniCredit Hong Kong), 25F Man Yee Building, 68 Des Voeux Road Central, Hong Kong

l) UniCredit Bank Singapore Branch (UniCredit Bank Singapore), Prudential Tower, 30 Cecil Street, #25-01, Singapore 049127

Regulatory authority: Monetary Authority of Singapore, 10 Shenton Way MAS Building, Singapore 079117

m) UniCredit Bank AG Tokyo Branch (UniCredit Tokyo), Otemachi 1st Square East Tower 18F, 1-5-1 Otemachi, Chiyoda-ku, 100-0004 Tokyo, Japan

n) UniCredit Bank New York (UniCredit Bank NY), 150 East 42nd Street, New York, NY 10017 Regulatory authority: "BaFin" – Bundesanstalt für Finanzdienstleistungsaufsicht, Lurgialle 12, 60439 Frankfurt, Germany and New York State Department of Financial Services, One State Street, New York, NY 10004-1511

POTENTIAL CONFLICTS OF INTEREST

UniCredit Bank AG acts as a Specialist or Primary Dealer in government bonds issued by the Italian, Portuguese and Greek Treasury. Main tasks of the Specialist are to participate with continuity and efficiency to the governments’ securities auctions, to contribute to the efficiency of the secondary market through market making activity and quoting requirements and to contribute to the management of public debt and to the debt issuance policy choices, also through advisory and research activities.

ANALYST DECLARATION

The author’s remuneration has not been, and will not be, geared to the recommendations or views expressed in this study, neither directly nor indirectly.

ORGANIZATIONAL AND ADMINISTRATIVE ARRANGEMENTS TO AVOID AND PREVENT CONFLICTS OF INTEREST

To prevent or remedy conflicts of interest, UniCredit Bank, UniCredit Bank London, UniCredit Bank Milan, UniCredit Bulbank, Zagrebačka banka, UniCredit Bank Czech Republic and Slovakia, Bank Pekao, UniCredit Russia, and UniCredit Bank Romania have established the organizational arrangements required from a legal and supervisory aspect, adherence to which is monitored by its compliance department. Conflicts of interest arising are managed by legal and physical and non-physical barriers (collectively referred to as “Chinese Walls”) designed to restrict the flow of information between one area/department of UniCredit Bank Milan, UniCredit Bank London, UniCredit Bank Milan, UniCredit Bulbank, Zagrebačka banka, UniCredit Bank Czech Republic and Slovakia, Bank Pekao, UniCredit Russia, UniCredit Bank Romania, and another. In particular, Investment Banking units, including corporate finance, capital market activities, financial advisory and other capital raising activities, are segregated by physical and non-physical boundaries from Markets Units, as well as the research department. In the case of equities execution by UniCredit Bank AG Milan Branch, other than as a matter of client facilitation or delta hedging of OTC and listed derivative positions, there is no proprietary trading. Disclosure of publicly available conflicts of interest and other material interests is made in the research. Analysts are supervised and managed on a day-to-day basis by line managers who do not have responsibility for Investment Banking activities, including corporate finance activities, or other activities other than the sale of securities to clients.

ADDITIONAL REQUIRED DISCLOSURES UNDER THE LAWS AND REGULATIONS OF JURISDICTIONS INDICATED

You will find a list of further additional required disclosures under the laws and regulations of the jurisdictions indicated on our website www.cib-unicredit.com/research-disclosure.

Notice to Austrian investors: This analysis is only for distribution to professional clients (Professionelle Kunden) as defined in article 58 of the Securities Supervision Act.

15 September 2015
Economics & FI/FX Research

FI Special
Notice to investors in Bosnia and Herzegovina: This report is intended only for clients of UniCredit in Bosnia and Herzegovina who are institutional investors (Institucionalni investitori) in accordance with Article 2 of the Law on Securities Market of the Federation of Bosnia and Herzegovina and Article 2 of the Law on Securities Markets of the Republic of Srpska, respectively, and may not be used by or distributed to any other person. This document does not constitute or form part of any offer for sale or subscription for or solicitation of any offer to buy or subscribe for any securities and neither this document nor any part of it shall form the basis of, or be relied on in connection with or act as an inducement to enter into, any contract or commitment whatsoever.

Notice to Brazilian investors: The individual analyst(s) responsible for issuing this report represent(s) that: (a) the recommendations herein reflect exclusively the personal views of the analysts and have been prepared in an independent manner, including in relation to UniCredit Group; and (b) except for the potential conflicts of interest listed under the heading “Potential Conflicts of Interest” above, the analysts are not in a position that may impact on the impartiality of this report or that may constitute a conflict of interest, including but not limited to the following: (i) the analysts do not have a relationship of any nature with any person who works for any of the companies that are the object of this report; (ii) the analysts and their respective spouses or partners do not hold, either directly or indirectly, on their behalf or for the account of third parties, securities issued by any of the companies that are the object of this report; (iii) the analysts and their respective spouses or partners are not involved, directly or indirectly, in the acquisition, sale and/or trading in the market of the securities issued by any of the companies that are the object of this report; (iv) the analysts and their respective spouses or partners do not have any financial interest in the companies that are the object of this report; and (v) the compensation of the analysts is not, directly or indirectly, affected by UniCredit’s revenues arising out of its business activities in financial transactions. This report represents that: except for the potential conflicts of interest listed under the heading “Potential Conflicts of Interest” above, UniCredit, its controlled companies, controlling companies or companies under common control (the “UniCredit Group”) are not in a condition that may impact on the impartiality of this report or that may constitute a conflict of interest, including but not limited to the following: (i) the UniCredit Group does not hold material equity interests in the companies that are the object of this report; (ii) the companies that are the object of this report do not hold material equity interests in the UniCredit Group; (iii) the UniCredit Group does not have material financial or commercial interests in the companies or the securities that are the object of this report; (iv) the UniCredit Group is not involved in the acquisition, sale and/or trading of the securities that are the object of this report; and (v) the UniCredit Group does not receive compensation for services rendered to the companies that are the object of this report or to any related parties of such companies.

Notice to Australian investors: This report is intended only for clients of UniCredit who are persons falling within the Second Appendix (Section 2, Professional Clients) of the law for the Provision of Investment Services, the Exercise of Investment Activities, the Operation of Regulated Markets and other Related Matters, Law 144(1)(2007 and persons to whom it may otherwise lawfully be communicated who possess the experience, knowledge and expertise to make their own investment decisions and properly assess the risks that they incur (all such persons together being referred to as “relevant persons”). This document must not be acted on or relied on by persons who are not relevant persons or relevant persons who have requested to be treated as retail clients. Any investment or investment activity to which this communication relates is available only to relevant persons and will be engaged in only with relevant persons. This document does not constitute an offer or solicitation to any person to whom it is unlawful to make such an offer or solicitation.

Notice to investors in Ivory Coast: The information contained in the present report have been obtained by UniCredit Bank AG from sources believed to be reliable, however, no express or implied representation or warranty is made by UniCredit Bank AG or any other person as to the completeness or accuracy of such information. All opinions and estimates contained in the present report constitute a judgement of UniCredit Bank AG as of the date of the present report and are subject to change without notice. They are provided in good faith but without assuming legal responsibility. This report is not an offer to sell or solicitation of an offer to buy or invest in securities. Past performance is not an indicator of future performance and future returns cannot be guaranteed, and there is a risk of loss of the initial capital invested. No matter contained in this document may be reproduced or copied by any means without the prior consent of UniCredit Bank AG.

Notice to Indian investors: This report is intended for distribution only to persons who are “wholesale clients” within the meaning of the Financial Advisers Act 2008 (“FAA”) and by receiving this report you represent and agree that (i) you are a “wholesale client” under the FAA (ii) you will not distribute this report to any other person, including (in particular) any person who is not a “wholesale client” under the FAA. This report does not constitute or form part of, in relation to any of the securities or products covered by this report, either (i) an offer of securities for subscription or sale under the Securities Act 1978 or (ii) an offer of financial products for issue or sale under the Financial Markets Conduct Act 2013.

Notice to Omani investors: This communication has been prepared by UniCredit Bank AG. UniCredit Bank AG does not have a registered business presence in Oman and does not undertake banking business or provide financial services in Oman and no advice in relation to, or subscription for, any securities, products or financial services may or will be given byUniCredit Bank AG. The content of this communication is not directed at nor is it addressed to those persons who are aware of the potential conflicts of interest arising from UniCredit’s holdings in foreign securities and neither constitutes an offer of securities in Oman as contemplated by the Commercial Companies Law of Oman (Royal Decree 4/74) or the Capital Market Law of Oman (Royal Decree 80/98), nor does it constitute an offer to sell, or the solicitation of an offer to buy non-Omani securities in Oman as contemplated by Article 139 of the Executive Regulations to the Capital Market Law (issued vide OMA Decision 1/2009). This communication has not been approved by and UniCredit Bank AG is not regulated by either the Central Bank of Oman or Oman’s Capital Market Authority.

Notice to Pakistani investors: Investment information, comments and recommendations stated herein are not within the scope of investment advisory activities as defined in sub-section I, Section 2 of the Securities and Exchange Ordinance, 1969 of Pakistan. Investment advisory services are provided in accordance with a contract of engagement on investment advisory services concluded with brokerage houses, portfolio management companies, non-deposit banks and the clients. The distribution of this report is intended only for informational purposes for the use of professional investors and the information and opinions contained herein, or any part of it shall not form the basis of, or be relied on in connection with or act as an inducement to enter into, any contract or commitment whatsoever.

Notice to Polish investors: This document is intended solely for professional clients as defined in Art. 3.39b of the Trading in Financial Instruments Act of 29 July 2005 (as amended). The publisher and distributor of the document certifies that it has acted with due care and diligence in preparing it, however, assumes no liability for its completeness and accuracy. This document is not an advertisement. It should not be used in substitution for the exercise of independent judgment.

Notice to Serbian investors: This analysis is only for distribution to professional clients (profesionalni klijenti) as defined in article 172 of the Law on Capital Markets.

Notice to UK investors: This communication is directed only at clients of UniCredit Bank who (i) have professional experience in matters relating to investments or (ii) are persons falling within Article 49(2)(a) to (d) (“high net worth companies, unincorporated associations, etc.”) of the United Kingdom Financial Services and Markets Act 2000 (Financial Promotion) Order 2005 or (ii) to whom it may otherwise lawfully be communicated (all such persons together being referred to as “relevant persons”). This communication must not be acted on or relied on by persons who are not relevant persons. Any investment or investment activity to which this communication relates is available only to relevant persons and will be engaged in only with relevant persons.

This document may not be distributed in Canada.